(April 25, 2014)

Duration: 60 minutes
Instructor: Silvana Nahlus

- Answer the questions in the space provided for each problem.
- If more space or scratch is needed, you may use the back pages.
- Only scientific calculators are permissible.
- The exam has 5 pages consisting of 7 exercises.

Grades:

1.a	
8\%	
1.b	
8%	
2.	
10%	
3.a	
10%	
3.b	
6%	
3.c	
10%	

$\mathbf{4 .}$	
12%	
$\mathbf{5 .}$	
12%	
$\mathbf{6 .}$	
12%	
$\mathbf{7 .}$	
12%	
Total	
$\mathbf{1 0 0} \%$	

1. a) Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
b) Show that $A-(B \cup C)=(A-B) \cap(A-C)$.
2. Given that the sets $A_{1}, A_{2}, A_{3}, \ldots \ldots$ are all countable, show that $\bigcup_{i=1}^{\infty} A_{i}$ is also countable.
3. a) Give as good a big-O estimate as possible for the function $f(x)=$ $(\log n!+\sqrt{n})\left(n^{2}+2\right)$
b)Define the statement $f(x, y)$ is $\Theta(g(x, y))$, that is define $f(x, y)$ is a big theta of $g(x, y)$.
c)Let k be a positive integer. Show that $1^{k}+2^{k}+\ldots \ldots+n^{k}$ is $O\left(n^{k+1}\right)$
4. If a and r are real numbers and $r \neq 0$, then prove

$$
\sum_{j=0}^{n} a r^{j}=\left\{\begin{array}{lr}
\frac{a r^{n+1}-a}{r-1} & \text { if } r \neq 1 \\
(n+1) a & \text { if } r=1
\end{array}\right.
$$

5. Find the Boolean product of A and B^{T}, where $A=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
6. Let $f: Z \times Z \rightarrow Z \times Z$ and $g: Z \times Z \rightarrow Z \times Z$ be defined by $f(m, n)=(m+2, n-3)$ and $g(m, n)=(m-2, n+3)$. Show that $f \circ g$ is one-to-one.
7. Find a formula for $\sum_{k=0}^{m^{2}-1}[\sqrt{k}]$, where m is a positive integer.
