

MTH207 – Discrete Mathematics Spring 2013-2014 Exam 2 (April 25, 2014)

Name:

ID:

Duration: 60 minutes

Instructor: Silvana Nahlus

- Answer the questions in the space provided for each problem.
- If more space or scratch is needed, you may use the back pages.
- Only scientific calculators are permissible.
- The exam has **5** pages consisting of **7** exercises.

Grades:

1.a	
8%	
1.b	
8%	
2.	
10%	
3.a	
10%	
3.b	
6%	
3.c	
10%	

4.	
12%	
5.	
12%	
6.	
12%	
7.	
12%	
Total	
100%	

1. a) Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

b) Show that $A - (B \cup C) = (A - B) \cap (A - C)$.

2. Given that the sets A_1 , A_2 , A_3 , ... are all countable, show that $\bigcup_{i=1}^{\infty} A_i$ is also countable.

3. a)Give as good a big-O estimate as possible for the function $f(x) = (\log n! + \sqrt{n})(n^2 + 2)$

b)Define the statement f(x, y) is $\Theta(g(x, y))$, that is define f(x, y) is a big theta of g(x, y).

c)Let k be a positive integer. Show that $1^k + 2^k + \dots + n^k$ is $O(n^{k+1})$

4. If *a* and *r* are real numbers and $r \neq 0$, then **prove**

$$\sum_{j=0}^{n} a r^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

5. Find the Boolean product of *A* and *B^T*, where $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$

6. Let $f: Z \times Z \to Z \times Z$ and $g: Z \times Z \to Z \times Z$ be defined by f(m,n) = (m+2, n-3) and g(m,n) = (m-2, n+3). Show that $f \circ g$ is one-to-one.

7. Find a formula for $\sum_{k=0}^{m^2-1} \left\lfloor \sqrt{k} \right\rfloor$, where m is a positive integer.

